
Voltage (Min-Max) 3-5V

of Pins used 5

Type of pins used MIXED

MODULES – The JoyStick Module

Building with the “JoyStick”
module.

By: Tyson Popynick

Aus Electronics Direct

mailto:prot3us1@gmail.com?subject=Exploring%20the%20Resistor
http://www.auselectronicsdirect.com.au/

1 JoyStick Module

©Tyson Popynick 2016 for Aus Electronics Direct

What is the active component in this module?
This module is built around 2 potentiometers and a tactile button. A voltage is passed in to each

potentiometer, which then outputs a value that is directly related to the position of the stick.

We can then read these values and use them to control our projects. The button will need to be

de-bounced as always to prevent multiple readings.

Example Circuit Layout:

2 JoyStick Module

©Tyson Popynick 2016 for Aus Electronics Direct

Example Circuit Code:
//----Begin Code (copy from here)----
/*
Joystick module example code created by Tyson Popynick (prot3us1@gmail.com) for Aus Electronics Direct.
Outputs are found at the bottom of the sketch, dead zone, null zone and de-bounce time can be set by user.
Debug output verbosity can be set by user.

Gives the following outputs:
Button clicked
Button held + duration
Direction moved + distance moved
*/
//Includes:

//Variables:
//Non changeable variables:
int joyInXPin = A0; //X-Axis input pin
int joyInYPin = A1; //Y-Axis input pin
int joyInButton = 7; //Button input pin
int debounceState = 0; //Variable to store the debounce state
int isHeld = 0; //Variable to store the last debounce state
unsigned long lastDebounce = 0; //Variable to store the last time the button was pressed
int valX = 0; //Variable to store the value of the X-axis in
int valY = 0; //Variable to store the value of the Y-axis in
int lastX = 0; //Variable to hold the last X value
int lastY = 0; //Varialble to hold the last Y value

//Changeable Variables, edit the values below to tweak operation.
unsigned long debounceTime = 100; //Minimum time to wait between button state changes
int DEAD_ZONE = 5; //Joystick dead zone, gives a tiny null area in the middle of the stick to stop ghost values.
int nullX = 500; //average output of X axis at center
int nullY = 528; //average output of Y axis at center
//debug settings
int debug_rawXY = 0; //Should we output raw X/Y Data to serial? (1 = Show / 0 = hide)
int debug_rawButton = 0; //Should we output raw button Data to serial? (1 = Show / 0 = hide)
int debug_processedButton = 1; //Should we output processed button Data to serial? (1 = Show / 0 = hide)
int debug_processedJoystick = 1; //Should we output processed joystick data to serial? (1 = show / 0 = hide)

void setup() {
// put your setup code here, to run once:
Serial.begin(9600);
}

void loop() {
 // put your main code here, to run repeatedly:
 //Joystick input
 lastX = valX;
 lastY = valY;
 valX = analogRead(joyInXPin);
 valY = analogRead(joyInYPin);
 if (valX > nullX && (valX - nullX) >= DEAD_ZONE) {
 //Up
 joyUp(valX - nullX);
 }
 if (valX < nullX && (nullX - valX) >= DEAD_ZONE) {
 //Down
 joyDown(nullX - valX);
 }
 if (valY < nullY && (nullY - valY) >= DEAD_ZONE) {
 //Left
 joyLeft(nullY - valY);
 }
 if (valY > nullY && (valY - nullY) >= DEAD_ZONE) {
 //Right
 joyRight(valY - nullY);
 }
 //Print the values to the Serial Output if we have the debug variable set to 1

3 JoyStick Module

©Tyson Popynick 2016 for Aus Electronics Direct

 if (debug_rawXY == 1) {
 Serial.print("X Axis: ");
 Serial.print(valX);
 Serial.print(" Y Axis: ");
 Serial.println(valY);
 }
 //Button input
 if (debounceState == 1) {
 if ((millis() - lastDebounce) >= debounceTime) {
 if (digitalRead(joyInButton) == HIGH && isHeld == 0) {
 //Button Released?
 if (debug_rawButton == 1) {
 Serial.println("Button Clicked with no hold.");
 }
 debounceState = 0;
 buttonClicked();
 }
 if (digitalRead(joyInButton) == HIGH && isHeld == 1) {
 //Button Released?
 if (debug_rawButton == 1) {
 Serial.print("Button Released after holding for: ");
 Serial.print(millis() - lastDebounce);
 Serial.println(" mS.");
 }
 debounceState = 0;
 isHeld = 0;
 buttonReleased(millis() - lastDebounce);
 }
 if (digitalRead(joyInButton) == LOW) {
 //Button still pressed??
 isHeld = 1;
 if (debug_rawButton == 1) {
 Serial.print("Button held for: ");
 Serial.println(millis() - lastDebounce);
 }
 }
 }
 }
 if (debounceState == 0) {
 if (digitalRead(joyInButton) == LOW) {
 //Button pressed?
 debounceState = 1;
 lastDebounce = millis();
 }
 }
} //Loop end
//--
/*
The sections below all contain an area that looks like this:
//Actions to perform when this is triggered

//End actions to perform
 Feel free to add any actions in between those lines, that you would like to perform when that particular event
is triggered.
*/
//--
void buttonClicked() {
 //This is called when the button is clicked without holding.
 if (debug_processedButton == 1) {
 Serial.println("Button Click event fired.");
 }
 //Actions to perform when this is triggered

 //End actions to perform
}
void buttonReleased(int lengthHeld) {
 //This is called when the button is released after holding. lengthHeld contains duration in mS.
 if (debug_processedButton == 1) {

4 JoyStick Module

©Tyson Popynick 2016 for Aus Electronics Direct

 Serial.print("Button Held event fired, length of hold was: ");
 Serial.print(lengthHeld);
 Serial.println(" Milliseconds.");
 }
 //Actions to perform when this is triggered

 //End actions to perform
}
bool buttonHeld() {
 //This is called to check if the button is still being held. True or 1 if its held, False or 0 if not.
 if (isHeld == 1) {
 return 1;
 }
 else {
 return 0;
 }
 //Actions to perform when this is triggered

 //End actions to perform
}
void joyUp(int moveAmt) { //Called when the joystick is moved "upwards", with the value stored in moveAmt
 moveAmt = constrain(moveAmt, 0, 495);
 if (debug_processedJoystick == 1) {
 Serial.print("Joystick moved Up.");
 Serial.println(moveAmt);
 }
 //Actions to perform when this is triggered

 //End actions to perform
}
void joyDown(int moveAmt) { //Called when the joystick is moved "downwards", with the value stored in moveAmt
 moveAmt = constrain(moveAmt, 0, 495);
 if (debug_processedJoystick == 1) {
 Serial.print("Joystick moved Down.");
 Serial.println(moveAmt);
 }
 //Actions to perform when this is triggered

 //End actions to perform
}
void joyLeft(int moveAmt) { //Called when the joystick is moved "left", with the value stored in moveAmt
 moveAmt = constrain(moveAmt, 0, 495);
 if (debug_processedJoystick == 1) {
 Serial.print("Joystick moved Left.");
 Serial.println(moveAmt);
 }
 //Actions to perform when this is triggered

 //End actions to perform
}
void joyRight(int moveAmt) { //Called when the joystick is moved "right", with the value stored in moveAmt
 moveAmt = constrain(moveAmt, 0, 495);
 if (debug_processedJoystick == 1) {
 Serial.print("Joystick moved Right.");
 Serial.println(moveAmt);
 }
 //Actions to perform when this is triggered

 //End actions to perform
}
//----End Code (copy to here)----

5 JoyStick Module

©Tyson Popynick 2016 for Aus Electronics Direct

Expected Output:
The code provides output to debug the module, as well as the ability

to be easily modified to perform any actions the user wants based

on input.

See image (right) for example.

This module is useful for…
Some ideas for projects this module is useful in might include:

1. Robotics

2. RC Vehicles

3. Games/Controllers

E-Mail the author by CLICKING HERE.

 Need more modules, components or project ideas or kits? Aus Electronics Direct have the best

prices, and a fantastic range! (And other products too!)

mailto:prot3us1@gmail.com?subject=Module%20Guides
http://www.auselectronicsdirect.com.au/

	What is the active component in this module?
	Example Circuit Layout:
	Example Circuit Code:
	Expected Output:
	This module is useful for…

